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1. INTRODUCTION

From ®nite element theory it is well known that for isotropic problems, meshes with equilateral

triangles are more suitable. However, the notion of equilaterality involves lengths through scalar

products in a given metric. Therefore anisotropic meshes might be seen as isotropic with respect to a

different metric. Now, if we de®ne this metric by an a posteriori error estimation, we can adapt the

mesh to follow the solution.

Of course, an unstructured grid environment is the natural framework for the introduction of

general adaptivity and anisotropy concepts.1±3 However, our experience shows that in adaption

procedures based on local metric changes, three major dif®culties remain.

1. As the metric is de®ned from the interpolation error of some quantity, the extension to systems

of PDEs is not clear, especially when phenomena of different types interact (e.g. in shock±

boundary layer interactions).

2. Boundary layers are not correctly resolved and wall coef®cients (especially the friction

coef®cient) obtained over adapted meshes are useless. This is due to the fact that the distance

from the ®rst-layer points to the wall is not uniform. This is one of the major weakness of

anisotropic adaption in CFD.

3. Multiscale phenomena are hard to capture by adaption (e.g. small eddies in a turbulent ¯ow).

In this paper we present three ideas to remove the above dif®culties.
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The ®rst idea is the intersection of the different metrics obtained for the different variables of a

PDE, which in our case are the conservation variables. This also removes the dif®culty we had until

now in choosing the `right' variable for building the metric from its interpolation error. Indeed, we

used to choose e.g. the pressure or the density for Euler computations and e.g. the local Mach number

or the entropy for viscous computations. Of course, this is a dead-end, as none of these choices could

give satisfaction because one variable cannot encapsulate all the physics of the system.

The second idea is motivated by two requirements coming in fact from structured meshes, which

are known to be more suitable near walls: (i) we want the meshes to be as orthogonal as possible near

the body; (ii) we want each node layer to be at a uniform distance from the wall. The idea consists of

a modi®cation of our local metric near the wall. To enforce the orthogonality of the mesh in this area,

we change the eigenvectors of our metric. The second requirement is satis®ed by giving the user the

possibility of prescribing the normal size of the elements along the wall and propagating this through

the domain by a relaxation procedure to obtain a quasi-orthogonal mesh in near-wall regions with

each node layer at a uniform distance from the wall.

The third idea helps the capture of multiscale phenomena by introducing a relative rather than a

global de®nition of the metric. This also removes the dimensional incompatibilities between the

metrics coming from different variables when we use the ®rst idea.

These ideas can be extended to three-dimensional cases. In fact, to generate 2D meshes, we have

used our 3D surface grid generator after setting z to zero. The generation procedure is fast (an average

of 300,000 triangles per minute on a 10 M¯ops workstation).

Our adaption loop can be de®ned as follows.

Start from an initial mesh.

Adaptation loop.

(a) Solve the PDE (in this case the ¯uid dynamics system).

(b) Build a metric from the multivariable solution obtained in (a).

(c) Build an equilateral mesh with respect to the metric of (b) using a Delaunay-type mesh

generator.

End of loop.

We will discuss in particular point (b) where we introduce the idea presented above. We also give a

brief description of the ¯uid solver and the mesh generator.

2. NAVIER±STOKES SOLVER

We use the NSC2KE ¯uid solver for these computations. More details can be found in Reference 4. A

®nite volume Galerkin formulation of the Navier±Stokes equations in conservation form has been

considered. A four-stage Runge±Kutta scheme is used for time integration. The Roe Riemann solver5

has been used for the Euler part together with a MUSCL-type reconstruction and van Albada limiters6

for second-order accuracy. The P1 ®nite element has been used for the viscous part of the operators.

A Steger±Warming7 ¯ux-splitting procedure has been used at the in¯ow and out¯ow boundaries,

while no-penetration or no-slip boundary conditions are applied to solid walls depending on the

nature of the ¯ow. Turbulent modelling is done using the classical k±e model8 with special wall laws

enabling separated and unsteady ¯ow computation.9 This solver is in free access (anonymous ftp

piranha.inria.fr under pub=).
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3. MESH GENERATION

We give a brief description of our Delaunay-type mesh generator; more details can be found in

References 10 and 11. For mesh adaption, two strategies are possible: local optimization of the mesh

or global regeneration at each adaption.1,2 In this work we use the ®rst approach. Both approach have

advantages and disadvantages from the implementation point of view.

Once the metric is given (see below for the metric de®nition), the mesh generation procedure is

applied. This algorithm uses ®ve different local tools: edge suppression, vertex suppression, vertex

addition, edge swapping and vertex reallocation (barycentring step). We need three different grids:

one de®ning the domain geometry (`CAD mesh', tG) which is ®xed during the mesh adaption loop,

one that contains the control space information (i.e. the metric tensor de®nition) denoted t0 and the

adapted mesh t1. We can say that this algorithm solves the following problem: ®nd `an optimal

mesh' t1 adapted from t0 with respect to the criterion imposed by the metric tensor m and

compatible with tG.

Thus we suppose that the meshes tG and t0 are given together with the metric tensor m obtained

from a ®nite element solution over t0. Initially we have t1�t0, but tG can of course be different

from t0.

Different steps can be distinguished in our mesh adaption procedure.

Data structure creation and veri®cation

Prior to grid adaption it is necessary to create some auxiliary data: mesh connectivity arrays,

boundary and inter-subdomain (geometrical and physical)* edges with their associated tangent

vectors, ®xed point localization, etc. A topological veri®cation step together with a triangle

orientation is made in order to guarantee that the given meshes are correct and oriented.

Geometry reconstruction

The generalized Farin algorithm10 is used in order to de®ne a `G1' BeÂzier surface over tG.

Initial regularization

Depending on user choices, an initial optimization step (edge swapping) is made in order to

improve the initial mesh quality. Numerical experiences show that the ®nal result is better if this

initial optimization is made.

Grid adaption

The triangles of t1 are ordered in a particular data structure called a double dynamic list (DDL).

Three double lists are considered (vertices, edges and triangles). Suppose that the ®rst i7 1 edges aj,

j� 1, . . . , i7 1, are treated; then the edge ai is taken. The procedure that we propose is the following

one.

1. Let di be the length of ai computed with the metric tensor m. We have three possibilities.

(a) If di> lmax (lmax� 1�4Lref), then ai must be cut into two edges using the add-vertex

procedure. The new mesh elements (vertices, edges and triangles) are added at the end of

*The ®rst ones correspond to intersections of regular surfaces and the second ones correspond to intersections of user-de®ned
subdomains.
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their corresponding DDL. Now ai has changed and we again compute its length, di. If

di> lmax, then we repeat the same process until its associated length di 4 lmax.

(b) If di< lmin (lmin� 0�6Lref), then ai is suppressed, leading to the creation of new edges. We

check whether their lengths are bigger than lmax, in which case the previous process is

applied, or smaller than lmin, in which case this process is repeated.

(c) If lmin 4 di 4 lmax, ai is kept.

2. If we have done a local mesh modi®cation, a local optimization step must be considered. In this

case, edge swapping is applied to the new or modi®ed edges.

This process is repeated over all the edges.

Final optimization

Finally a global optimization process is considered. All non-prescribed interior vertices with less

than four elements connected to them are suppressed and a barycentring step is applied: all non-®xed

vertices are moved to the centre of gravity of their neighbours with respect to the metric m.

Thus a ®nal mesh t1 adapted from t0 with respect to the metric tensor m is obtained and it

satis®es the geometrical and topological constraints. After each adaption step an initial solution is

obtained over the new mesh by interpolation of the solution on the previous mesh. A good

interpolation is crucial for unsteady computations.

Remarks on mesh generation

1. The remeshing algorithm always works locally. This strategy allows us to remesh 3D surfaces

with only a local parametrization.

2. Being based on a Delaunay algorithm, this technique completely avoids the possibility of any

overlapping in the mesh from the moment that the metric is well de®ned (i.e. de®nite positive).

4. METRIC COMPUTATIONS

During automatic mesh generation it is necessary to have as much information as possible on the

nature and local behaviour of the solution. These indications constitute the control space which

governs the grid generation. As we are interested in information on the element shapes and sizes, we

need to convert somehow what we know about the solution to something having the dimension of a

length and containing directional information. This might be done by giving at each point x2O�R2

three parameters (six in R3). This kind of control is equivalent to an isotropic control with a change in

the metric tensor all over the domain.*

It is easy to prove that if K0 is a non-degenerate triangle, then there exists a unique metric where K0

is equilateral with unity edge lengths. Thus, in order to obtain triangles with a given stretching and

size over a subdomain, it is suf®cient to construct an isotropic mesh using the metric tensor m with

an associated re®nement function h equal to unity everywhere. m is given at every point x2O�R2

by

m�x� � r�x� g1�x� 0

0 g2�x�
� �

r�x�ÿ1; �1�

where g1(x)> 0 and g2(x)> 0 are the m(x) eigenvalues and r(x) is the rotation matrix of angle a(x)

that maps the R2 canonical basis over the m(x) unit eigenvectors.

*For the sake of simplicity we will consider in this section that O�R2. We obtain the same results if O de®nes a surface or if
O�R3. In the last case, `triangles' are replaced by `tetrahedran'.
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Elementary differential geometry says that the length of a parametric curve G(t), where t2 [0, 1l, in

the new metric is de®ned by

L�G� �
�1

0

�p G0�t�Tm�G�t��G0�t��dt: �2�

We propose the following discretization of the metric tensor m. Let m be given at vertices

{m(xi), i� 1, . . . , nv}; then over each mesh triangle K0 the m coef®cients are linearly interpolated

and a continuous discretization of the metric tensor m is obtained.

Let G� [x0, x1] be a segment, G�K0. Computing its length using equation (2), we obtain

L�G� �
�1

0

�p �G0�Tm�G�t��G0�dt �3�

�
�1

0

�p l2
0 � t�l2

1 ÿ l2
0 �dt �4�

� 2

3

l2
0 � l0l1 � l2

1

l0 � l1
; �5�

where li� �p �G0�Tm�xi�G0�, i� 0, 1.

We now discuss how the metric tensor m is de®ned in order to satisfy an adaption criterion.

Suppose that we only work with one variable denoted Z. We are going to determine the metric tensor

in order to equilibrate the interpolation error.

Assume that a ®rst solution has been computed over a given mesh and let Z be continuous

piecewise linear interpolated. Then12,13 the interpolation error depends on the Hessian matrix of Z:

e � jZÿPhZj0 4 c0h2jh�Z�j0; �6�
where pIhZ is the P1 interpolation of Z,

h � @2Z=@x2 @2Z=@x@y
@2Z=@x@y @2Z=@y2

� �
� r

l1 0

0 l2

� �
rÿ1 �7�

and the metric tensor m is de®ned by

m � r
jl1j 0

0 jl2j
� �

rÿ1: �8�

The error over a mesh edge ai can be computed as

Ei � jaT
i Haij5 �p c0aT

i Mai�: �9�
Now the mesh is equilateral and of edge length c

p
0 in the metric de®ned by m.

We can associate an ellipse em with the metric tensor m having axes d1 and d2 (eigenvectors of

m) of lengths 1=l1 and 1=l2 respectively.

Remarks on metric computations

1. In the metric de®nition we have to introduce the maximum and minimum edge lengths in the

mesh to avoid unrealistic metrics. This is not really a restriction as usually we have a good idea

of what these quantities should be. More precisely, the eigenvalues of the metric are limited as

follows:

~l1;2 � min max jl1;2j;
1

h2
max

� �
;

1

h2
min

� �
;

with hmin and hmax being the minimal and maximal edge lengths allowed in the mesh.
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2. The key point in the metric de®nition is the second derivatives. However, in our application the

solver is a P1 ®nite element solver. Therefore a weak formulation (by Green's formula) has to

be used to compute the Hessians.

4.1. Extension to systems

Suppose now that several variables Z1, Z2, . . . , Zr are given. The problem becomes: ®nd the metric so

that the maximum interpolation error is minimized for all the variables. It is clear from the

geometrical identi®cation ellipse±metric that the solution to the previous minimization problem is to

®nd the biggest ellipse contained in the intersection of all the ellipses e1, e2, . . . , er corresponding

to the metrics m1, m2, . . . ,mr computed from the variables Z1, Z2, . . . , Zr. It is not easy in general

to ®nd the optimal solution of this problem. However, the following algorithm seems to be suitable

enough (see Figure 1). Suppose that only two variables Z1 and Z2 are provided. We ®nd an

approximation of the optimal intersection ellipse by the following procedure.

1. If the two ellipses e1 and e2 do not intersect (this happens when one ellipse is contained the

other), the one with smallest area is taken as intersection and the suitable metric is the

associated one.

2. Otherwise, let lj
i and vj

i, i, j� 1, 2, be the eigenvalues and eigenvectors respectively of mj,

j� 1, 2. The intersection metric m̂ is de®ned by

m̂ � m̂1 � m̂2

2
; �10�

where m̂1 (resp. m̂2) has the same eigenvectors as m1, (v1
1, v1

2) and eigenvalues

~l
1

i � max�l1
i ; v1

iT m2v1
i �; i � 1; 2: �11�

Now, if n variables are given, the ®nal intersection metric is computed as follows.

3. m̂� intersection (m1, m2).

4. For i� 3, . . . , n, m̂� intersection (m̂, mi).

Figure 1. Approximated optimal ellipse of two-ellipse intersection
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Here a dimensional problem appears owing to the fact that the different metrics are based on

different variables having different dimensions. We will see that a relative rather than the global error

estimation (6) permits us to avoid this problem.

4.2. Boundary layer improvement

As stated previously, metric evaluation is done by Green's formula with homogeneous Neumann

boundary condition on all boundaries. This is quite logical and means that elements do not change in

size and shape near boundaries. However, it also means that information on normal mesh sizes is not

available at the walls and as a result the sizes are generally overestimated. Our experience shows that

this is not suitable for viscous computation in boundary layers. This is why structured meshes are

usually more suitable for these regions.

We have tried to give a new boundary condition for the metric on the walls to improve the mesh

de®nition in the near-wall area by approaching structured meshes. More precisely, along the wall the

previous metric m(x) is replaced by a new metric

m̂�x� ÿ TLTÿ1;

where

L � diag
1

h2
n

; lt

� �
; T � �~n�x�; ~t�x��:

In other words, along solid walls the eigenvectors are now the unit normal and tangent vectors at the

wall, with 1=h2
n and lt the corresponding eigenvalues. The re®nement along the wall can now be

monitored through hn. More precisely, in the adapted mesh the distance from the wall of the ®rst-

layer nodes will be hn. This quantity is given by the user and depends on the Reynolds number. On

the other hand, lt is computed by taking the maximum of the two projection lengths on ~t�x� of the m
unit eigenvectors times the corresponding eigenvalues.

It is necessary to keep the information coming from the original metric on lt to be able to

recognize situations such as shock±boundary layer interactions.

A relaxation procedure can now be applied to propagate this orthogonality property further in the

mesh. In this paper this has been done for only two node layers. Figure 8 (see Section 5.2) shows the

distance of the points belonging to these layers from the wall for a supersonic viscous ¯ow over an

aerofoil. To give an idea of what we get without this boundary condition on the metric, the

corresponding result with only the homogeneous Neumann boundary condition for the metric along

the wall has also been shown in the same ®gure.

4.3. Multiscale phenomena

As we have stated, our experience shows that the previous approach is not satisfactory for

capturing multiscale phenomena. For instance, when several eddies with variable energy are present,

the mesh adaption has dif®culty in capturing the weaker ones, especially if there are shocks involved

in the ¯ow. We notice that equation (6) leads to a global error while we would like to have a relative

one. Indeed, for the backward-facing step for instance, the mean ¯ow velocities at the in¯ow and in

the main and secondary recirculations differ by several orders of magnitude (104±105). Therefore,

when using a global criterion to evaluate the metric, the secondary recirculation is dif®cult to capture.
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We propose the following estimation which takes into account not only the dimension of the

variables but also their magnitude:

e � ZÿPhZ
max�jPhZj; e
���� ����

0

4 c0h2 D2Z
max�jPhZj; e
���� ����

0

; �12�

where we have introduced the local value of the variable in the norm. The parameter e is a cut-off to

avoid numerical dif®culties and also to de®ne the difference between the orders of magnitude of the

smallest and largest scales we try to capture. Indeed, when a phenomenon falls below e, it will not be

captured. This can also be seen as looking for a more precise estimation in regions where the variable

is small (i.e. a variable c0 in (6)). Another important consequence of this estimation is that it removes

the dimensional problems when intersecting metrics coming from different quantities.

5. NUMERICAL EXAMPLES

In this section we describe four con®gurations of compressible inviscid and viscous ¯ows. For all

these cases the initial meshes have been generated using EMC2.14

For the ®rst two steady cases we compare the normalized residual evolution of the adapted

computation with a direct computation where we have started on the last adapted mesh from uniform

solution using the same time integration procedure. The residual is based on the norm of the right-

hand side of the equations and not on the time-derivative terms. In this way the time step size does

not in¯uence the convergence history. This gives an idea of the cost of similar computations on a

large uniform grid. In fact, for the same resolution we would need many more grid points on a

uniform mesh, but this just reinforces our conclusions. For both cases the convergence is accelerated

by the adaption technique. In CPU terms, because in the adaption loop most of the work is done at

coarser levels, the computation cost is reduced by at least a factor of 20.

For the steady cases the stop criterion for the adaption loop has been the mesh independence of the

results (especially wall coef®cients).

These techniques have been validated on several other con®gurations such as multielement

aerofoils. These computations can be found in Reference 15.

5.1. Supersonic scramjet inlet

The ®rst case consists of an internal supersonic ¯ow at Mach 3 in a scramjet inlet. Despite the

con®guration being symmetric, the whole domain has been computed to see whether the solution

remains symmetric or not. This case is devoted to an evaluation of our multivariable strategy for the

metric de®nition. The second modi®cation is not used here as it is an inviscid ¯ow.

Five automatic adaptions have been applied. We show the meshes and the corresponding iso-Mach

contours from the initial to the last adaption step in Figures 2 and 3. We can see how precise the

resolution of the discontinuities is for this ¯ow at step 5. It is interesting to notice that there is no

oscillation in the solution and that the ¯uid solver seems to nicely accept such meshes. Moreover, we

see that the solution stays perfectly symmetric even on a clearly non-symmetric mesh.

The initial mesh has around 8000 triangles and the ®nal mesh around 40,000. This gives an idea of

the number of elements we might need if we want an equivalent resolution on structured grids. The

convergence histories are shown in Figures 4 and 5 for the adapted and direct computations versus the

number of explicit iterations and CPU time.
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5.2. Supersonic viscous ¯ow over an NACA 0012 aerofoil

A Mach 2 supersonic ¯ow at Reynolds number 10,000 is studied over an NACA 0012 aerofoil. In

this con®guration the two new ideas we propose here are used. The quality of the wall coef®cients

(especially the friction coef®cient) is studied too. In particular, we want to see how much they depend

on the mesh.

The adaption loop length is six for this case. The convergence histories for the adaption loop and a

direct computation are shown in Figure 7 versus the number of explicit iterations and CPU time. As

expected, for viscous computations the convergence acceleration of the adaption strategy is more

important.

Figure 2. Evolution of mesh (initial, steps 2 and 5) for a supersonic scramjet inlet
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We can also see that the perturbation due to the adaption on the residual is more important than in

the last case. This comes from the fact that the ¯ow is viscous and that we have our new boundary

condition for the metric along the wall.

The meshes we obtain during the adaption loop and the corresponding iso-Mach contours are

shown in Figure 6. We can see that the multivariable intersection procedure works well for the

identi®cation of shock, boundary layer and wake regions; even the weak shocks at the trailing edge

have been detected.

Figure 8 shows the normal distance of the ®rst and second node layers to the wall. We can see ®rst

that for the ®rst layer this distance is exactly the same for all the nodes, which means that our

boundary condition on the metric works well, and second that the relaxation procedure we have

applied to propagate this property to the next layers also works quite well. For these computations we

Figure 3. Evolution of iso-Mach contours for an inviscid Mach 3 scramjet inlet
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have just propagated the property of being at the same distance from the wall only to the ®rst two

layers, but the same procedure can be applied to the other layers. In order to show what we obtain

without this boundary condition on the metric, we have also shown the corresponding distances to the

wall for the same layers after switching off our correction (i.e. the homogeneous Neumann boundary

condition for the metric). This explains the poor quality of the gradients evaluated at the wall until

now on adapted meshes and the fact that nice friction coef®cients were hard to obtain.

Figure 9 shows the pressure and friction coef®cients obtained on the initial mesh, on the mesh at

step 5 and on the last one. The results for steps 5 and 6 are identical.

5.3. Turbulent ¯ow over a backward-facing step

This is the classical backward-facing step (ratio of two between step and channel heights) at

Re1=H � 44;000 and in¯ow Mach number 0�1. The aim here is to show the difference between the

Figure 4. Convergence history versus number of explicit RK4 iterations (adaption versus direct)

Figure 5. Convergence history versus CPU time (adaption versus direct)

ANISOTROPIC UNSTRUCTURED MESH ADAPTION 485

# 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL 25: 475±491 (1997)



relative and global error estimates for the capture of multiscale phenomena. The ¯ow has been

computed on a ®ne regular mesh and the solution is shown in Figure 10. The predicted separation

length is seven. We capture surprisingly well the secondary recirculation with our wall laws. This is

an important point, as it is usually stated that this is an impossible task with eddy viscosity models

and wall laws and that we need more sophisticated models for this. The secondary recirculation has a

length of about 0�2H and a height of about 0�35H.

From this mesh and solution we do one adaption using the global and relative criteria with the

same c0e � 1� 10ÿ2. The obtained meshes are shown in Figure 11. We can see that when using the

global estimation, the secondary bubble area (although it exists) is not detected by the adaption. The

relative estimation, however, clearly captures the bubble. The relative estimation also leads to a much

®ner mesh in regions of interest. For the global criterion to have a similar re®nement, we need to ask

for a global error several orders of magnitude less, but this will lead to a uniform re®nement

Figure 6. Evolution of mesh and Mach contours (initial, steps 2 and 4) for supersonic viscous ¯ow over an aerofoil
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everywhere. Therefore, if the global criterion is not able to detect a phenomenon which is already

present, there is no hope for it to predict it at all.

5.4. Unsteady ¯ow around a cylinder

This is a subsonic ¯ow at Mach 0�4 and Reynolds number 80. Our aim here is to see how the mesh

adaption procedure follows an unsteady phenomenon.

Figure 7. Convergence history (adaption versus direct)

Figure 8. Wall distance with (left) and without (right) Dirichlet boundary condition
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We ®rst do a computation on an initial mesh with about 6000 triangles until the unsteady ¯ow is

established. The adimensional period of the movement being around seven, mesh adaption has been

carried out eight times in a period.

There is a major dif®culty in unsteady computations compared with steady cases. Indeed, as we

saw in the previous convergence history, at each adaption step the residual was perturbed. This is due

Figure 10. Backward-facing step: particle tracking for computation using relative error estimation

Figure 9. Cp (left) and Cf (right) at steps 0 (initial), 5 and 6. In¯uence of Dirichlet boundary condition for metric on wall
quantities
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to the fact that the linear interpolation of the solution on the new mesh cannot be compatible with the

non-linear nature of the solution and the equations need time to recover their level of resolution.

Basically, we need either a relaxation procedure after each adaption for the solution to be coherent

with the previous resolution level or an interpolation consistent with the equations we solve. In this

work, nothing has been done for this purpose, so the time evolution of quantities such as the drag and

lift coef®cients presents the same behaviour as the convergence history in steady computations.

However, we present the mesh evolution and the corresponding iso-Mach contours in Figure 12. We

can see that the mesh adaption procedure follows the unsteadiness of the ¯ow, while the number of

nodes remains almost constant.

5.5. CPU and Memory considerations

As NSC2KE is an explicit code, it does not require too much memory. The global memory

required is about (1500 times the number of nodes) bytes. The speed is about 10ÿ4 per node for

iteration on a 1 M¯op computer for second-order viscous computations using the hybrid upwind

scheme.

The metric computation and mesh generation modules are in C�� and have been optimized for

memory requirement. The average speed for the generation of the adapted mesh is 500 triangles per

second on a 1 M¯op computer.

6. CONCLUDING REMARKS

Anisotropic mesh adaption has been applied with success to compressible viscous ¯ows for a wide

range of Reynolds and Mach numbers. In particular, three new ideas have been described to remove

the basic dif®culties with adapted meshes for ¯ow computations involving multiple physical

interactions, boundary layers and multiscale phenomena. It has been shown that these modi®cations

greatly improve the quality of the adapted meshes for these situations.

These ideas are simple to take into account in any adaption procedure because they involve only

local and simple modi®cations of codes. Therefore they can be easily applied by other users.

Similarly, their extension to 3D con®gurations is straightforward.

Figure 11. Backward-facing step: partial view of meshes obtained with relative (top) and global (bottom) criteria. The main and
secondary recirculations are correctly identi®ed using relative error estimation
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We also saw that our upwind solver did not particularly suffer from the fact that the meshes had

poor quality in the Euclidean sense. We could also expect dif®culties in the evaluation of second

derivatives on such meshes. However, we saw that in weak form the obtained Hessian, despite not

being perfect, identi®es reasonably correctly the regions of interest.

Another important conclusion is that for steady computations, convergence of the explicit ¯ow

solver is improved when using mesh adaption. Indeed, as we saw, only a few thousand iterations were

Figure 12. Mesh and iso-Mach evolutions for one period
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necessary for convergence of both the Euler and Navier±Stokes cases on quite large meshes with only

a few of them on the ®ner levels. We recover here some kind of multigrid behaviour, but with a set of

independent re®ned levels where only interpolations (coarse to ®ne) are used and not projections (®ne

to coarse). Therefore the global CPU requirement is signi®cantly reduced compared with a direct

computation on a uniform ®ne mesh.

Developments are under way for the extension of these techniques to 3D applications. This

includes four steps:

(a) the metric evaluation as in 2D, obtained by a Laplacian assembly (done)

(b) the intersection of the solution metric with the geometrical metric of the 3D surface

representing the boundary (done)

(c) the adaption of the corresponding 3D surface mesh (done)

(d) existing 3D Delaunay mesh generator1 modi®cation to take into account a local metric de®ned

on a background mesh (in progress).
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